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We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic
lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by
means of a Monte Carlo method. It agrees satisfactorily with series expansions and with a set of experimental
results. Our results include a determination of the universal amplitude ratio of the specific-heat divergences at
both sides of the critical point.
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I. INTRODUCTION

Though real magnetic systems were supposed to be
Heisenberg-like, the Ising model was originally introduced
�1� as a simplified model of magnetic ordering, because its
relative simplicity offers better possibilities for a theoretical
analysis. In later years, it was found, however, that Ising-like
magnetic systems do exist. This is because real systems con-
sist of spins embedded in a crystal lattice, and the resulting
anisotropy field due to the neighboring charges may lift the
O�3� symmetry of an unperturbed spin. Depending on the
character of the perturbation, the spin may have an “easy
axis” or an “easy plane.” Here, we consider the former case,
which leads to Ising-like behavior.

In many cases, the perturbation is relatively small and the
system will approximately behave Heisenberg-like, except
near an ordering transition where the paramagnetic state
transforms into a long-range ordered one. Near the transition,
crossover �2–4� occurs to Ising-like behavior. The critical
singularities are then described by the Ising set of critical
exponents. In some other cases, the perturbation due to the
crystal field is so strong that the magnetic spins assume a
true Ising character. This situation occurs when the ionic
angular momentum S� is described by a spin quantum number
S�

1
2 , and the crystal field lifts the degeneracy of the Sz

eigenstates such that the Sz= �S doublet is lowest in energy,
with the higher levels so far away that they play no role,
even in the presence of exchange interactions between neigh-
boring spins. Then, the low-lying doublet can be described
by an effective spin-1/2 Ising Hamiltonian. This situation is
known to occur for the Co2+ ion in a tetrahedral coordina-
tion. It occurs also for some rare-earth ions like Dy3+ and
Yb3+ in a sufficiently strong crystal field, with the provision
that here the magnetic moments are due to spin as well as
orbital angular momentum, and should thus be denoted J�

instead of S� .
If such ions are embedded in a crystal structure for which

theoretical predictions for the thermodynamical properties
such as the specific heat exist, comparison with experiments

may be possible �5,6�. Such comparisons were made for dys-
prosium phosphate �6,7� and for some alkali cobalt halides
�8,9�. These systems were found to behave, at least approxi-
mately, as the Ising models on the diamond lattice and the
simple-cubic lattice, respectively.

The best way to obtain theoretical results for the thermo-
dynamic properties of these models would obviously be an
exact solution, but this is known to be a very difficult prob-
lem. It is thus noteworthy that it was claimed recently by
Zhang �10� that a conjectured exact solution was found for
the three-dimensional Ising model. However, Perk �11� and
Wu et al. �12� pointed out that Zhang’s result for the free
energy and the underlying arguments are flawed. Here, it
may be added that Zhang’s result for the critical point of the
simple-cubic Ising models is not compatible with indepen-
dent and mutually consistent numerical estimates �13,14�.
The difference with Zhang’s result exceeds the estimated nu-
merical accuracies �13,14� by several orders of magnitude.

In the absence of an exact solution, one may still resort to
approximations. At temperatures sufficiently far above and
below the critical point, excellent approximations exist in the
form of series expansion of the partition function or the free
energy, such as given in Refs. �15,16� for the model on the
simple-cubic lattice. In the critical region, the series of a
finite length become inaccurate, and a method to extrapolate
these series on the basis of a critical scaling assumption, such
as used by Butera and Comi �17�, is needed. In the case of
Rb3CoCl5 �rubidium cobalt chloride� �9�, the required theo-
retical prediction for the specific heat near criticality was
also obtained this way. A similar analysis has been performed
for the specific heat of DyPO4 �dysprosium phosphate� �6,7�,
which was instead compared with series expansions for the
diamond lattice. However, these specific-heat analyses were
conducted at a time that the value of the critical exponent �
was not well known, for instance, � was set to zero in Ref.
�9�. Moreover, Wegner’s correction to scaling �18� was not
included.

In order to obtain accurate predictions for the heat capac-
ity in the critical region, one may apply Monte Carlo simu-
lations. Cluster simulation methods �19,20�, which strongly
reduce critical slowing down, allow statistically accurate
simulations in the critical region. Extrapolation of the finite-
size simulation data to the thermodynamic limit is possible if*henk@lorentz.leidenuniv.nl
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the simulations cover a range of finite sizes exceeding the
correlation length. Whereas this still excludes, as a result of
the divergence of the correlation length, a narrow tempera-
ture range about the critical point, one may attempt to de-
scribe the extrapolated data by means of a scaling formula.
The present work reports our efforts along this line for the
case of the energy and the specific heat of the Ising model on
the simple-cubic lattice.

In Sec. II, we describe our Monte Carlo simulations, and
the extrapolation to infinite system size. The derivation of
scaling formulas for the energy and the specific heat, and the
data analysis in terms of these formulas, are presented in Sec.
III. Section IV discusses the numerical accuracies, provides
comparisons with results from series expansions and with a
set of experimental results, and ends with a few concluding
remarks.

II. NUMERICAL TECHNIQUE

The reduced Hamiltonian �Hamiltonian divided by kT� of
the Ising model is denoted

H�K� = − K�
�i,j�

sisj , �1�

where the indices i and j label nearest-neighbor lattice sites
on the simple-cubic lattice. The sum is on all nearest-
neighbor pairs, and the spins sk can assume values �1. The
coupling is defined by K�J /kT where J is minus the energy
of a pair of parallel nearest-neighbor spins, k the Boltzmann
constant, and T the temperature. The canonical reduced free
energy density f is equal to

f =
1

N
ln Z, Z = �

	S

e−H�K�, �2�

where Z is the partition function, N the number of spins, and
the sum is on all spin configurations 	S
. The energy E and
the specific-heat C per particle, as expressed in dimension-
less units, follow from the derivatives of f to K:

E

J
=

E

kTK
= −

df

dK
,

C

k
= K2 d2f

dK2 . �3�

A. Monte Carlo calculations

Substitution of Eqs. �2� and �1� in Eqs. �3� leads to

E

J
=

1

NK
�H� �4�

and

C

k
=

1

N
��H2� − �H�2� , �5�

where the ensemble averages �x�, which are defined as

�x� �
1

Z
�
	S


xe−H�K�, �6�

can be sampled directly using importance sampling.

The simulations involved the sampling of the energy, as
well as its square, for L�L�L Ising systems on simple-
cubic lattices, with periodic boundary conditions. The system
sizes were chosen as powers of 2 in the range 4�L�128,
and in addition as L=6 and 12. About 107 samples were
taken for L�16, 2�106 for L=32, 3�105 for L=64, and
5�104 for L=128. Each sample was preceded by a number
or Wolff cluster steps and/or Metropolis sweeps, depending
on the value of K in comparison with the critical coupling
Kc�0.221 654 6 �14�. For K�Kc, Wolff clusters tend to be
very small and only Metropolis sweeps were applied, and for
K�Kc, only Wolff cluster steps. In the intermediate range, a
few Metropolis sweeps were supplemented with a number of
Wolff cluster steps. The number of Wolff clusters was chosen
roughly equal to the inverse of the relative Wolff cluster size.
The coupling K was given some 50 different values chosen
to cover a wide range about the critical point.

B. Extrapolation

The analysis of the numerical finite-size data was done on
the basis of well-documented finite-size scaling methods
�21�. For noncritical systems with sizes L exceeding the cor-
relation length, the data for the energy should approximately
behave as

E�K,L� = E�K,	� + a�K�e−L/
�K� + ¯ �7�

from which the extrapolated energy E�K ,	� was obtained by
means of a least-squares analysis. A small-system-size cutoff
was applied when necessary to obtain a satisfactory residual
�2. This cutoff varied between L=6 far away from the criti-
cal point, and L=32 at a distance �K−Kc��0.005 from the
critical point. No reliable extrapolations were obtained for
�K−Kc� less than a few times 10−3, with the exception of K
=Kc, where one expects that the finite-size-dependent energy
converges as a power of L, which again enables extrapola-
tion to L=	. Typical estimated accuracies of the extrapolated
results for E /J are in the order of 10−5.

The same extrapolation procedure was applied to the
finite-size data for the specific heat with �K−Kc��0.005.
Typical accuracies of the extrapolated results for C /k are
estimated as at most a few times 10−4 for K�0.2 and K
�0.25, up to a few times 10−3 in the vicinity Kc. The ex-
trapolated data are listed in Ref. �22�.

III. SCALING AND LEAST-SQUARES ANALYSIS

A. Derivation from renormalization theory

The analysis of the extrapolated data was done on the
basis of scaling as derived from renormalization theory. The
relevant equations follow from the assumptions that the pic-
ture described in the following paragraph is valid.

The free energy density f�T1 ,T2 , . . .� of the infinite sys-
tem, expressed as a function of thermodynamic parameters
Tj �j=1,2 , . . .�, can be written as the sum of an analytic part
fa�T1 ,T2 , . . .� and a singular part fs. The singular part can be
written fs�t1 , t2 , . . .� as a function of Wegner’s �23� nonlinear
scaling fields tj, which are analytic functions of the Tj in a
neighborhood of a critical point under investigation. Thus,
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f�T1,T2, . . .� = fa�T1,T2, . . .� + fs�t1,t2, . . .� . �8�

The singular part satisfies the scaling equation as implied by
the renormalization theory. A rescaling of the linear dimen-
sions by a factor b thus leads to

fs�t1,t2, . . .� = b−dfs�by1t1,by2t2, . . .� , �9�

where d is the dimensionality and the yj are the renormaliza-
tion exponents associated with the scaling fields tj, with the
temperature exponent y1 positive, and the other exponents
negative. The choice b= �t1�−1/y1 thus yields

fs�t1,t2, . . .� = �t1�d/y1fs��1, �t1�−y2/y1t2, . . .� , �10�

where �1 has the sign of t1. Furthermore, fs�x1 ,x2 ,x3 , . . .� is
an analytic function in a neighborhood of the x1=1 ,x2
=0 ,x3=0 , . . ..

On the basis of this set of assumptions, we may Taylor
expand the free energy in powers of the arguments Tj and tj,
and then expand tj’s in Tj’s, resulting in an expression de-
pending only on the physical temperature fields, but with
expansion coefficients that remain to be determined. We fol-
low this procedure, restricting number of scaling fields in the
expansion of Eq. �10� to two, namely, the temperature field
t� t1 and the irrelevant field ũ� t2. The corresponding expo-
nents are denoted yt and yu, respectively. The temperature
exponent yt determines the leading singularity in the
temperature-induced ordering transition, while the irrelevant
exponent yu generates Wegner’s correction to scaling �18�.
Expansion of the right-hand side of Eq. �10� thus yields

fs�t, ũ� = �t�d/yt�
j

�j!�−1fs
0,j��1,0��t�−jyu/ytũj , �11�

where fs
0,j is the jth derivative of fs to its second argument.

The scaling fields are expanded as analytic power series in
the temperaturelike parameter t0, defined by

t0 � K/K, K � K − Kc. �12�

The analytic part of the free energy fa can be expanded di-
rectly in powers of K. The resulting expansion of the total
free energy density in powers of K and t can be expressed
in K, the only variable physical temperature parameter in our
problem, as given by the Hamiltonian �1�. Differentiation of
the resulting expansion of the free energy density to K yields
the dimensionless energy E /J. For d=3 dimensions, the
leading terms are included in

− E�K,	�/J = �
j=0,1,. . .

ej�K� j +
d�t�
dK

a��t��3−yt�/yt

+ b�u�t��3−yt−yu�/yt + p�u2�t��3−yt−2yu�/yt + ¯ .

�13�

where we have included the first three terms in the sum on j
in Eq. �11�, and u is an analytic function of t0 related to ũ by

d − yu

yt
fs

0,1��1,0�
d�t�
dK

ũ = b�u . �14�

The dimensionless specific-heat C /k of model �1� satisfies

C�K,	�
k

= K2d2f�K,	�
dK2 = −

K2

J

dE

dK
, �15�

and its expansion thus follows by differentiation of the en-
ergy, Eq. �13�. This leads to

C�K,	�
kK2 = �

j=1,2,. . .
jej�K� j−1 +

3 − yt

yt
d�t�

dK
�2

a��t��3−2yt�/yt

+
d2�t�
dK2 a��t��3−yt�/yt +

3 − yt − yu

yt

d�t�
dK

ub��t��3−2yt−yu�/yt

+
du

dK
b��t��3−yt−yu�/yt

+
3 − yt − 2yu

yt

d�t�
dK

u2p��t��3−2yt−2yu�/yt

+ 2u
du

dK
p��t��3−yt−2yu�/yt + ¯ . �16�

The parameters t and u, and their derivatives as they appear
in Eqs. �13� and �16�, are expanded in powers of t0 as

t = �
j=1,2,. . .

wjt0
j ,

d�t�
dK

= �
Kc

K2 �
j=1,2,. . .

jwjt0
j−1,

d2�t�
dK2 = �

Kc

K2 �
j=2,3,. . .

j�j − 1�wjt0
j−2 �

Kc

K3 �
j=1,2,. . .

jwjt0
j−1,

�17�

where � stands for the sign of t, � for its opposite, and

u = �
j=0,1,. . .

ujt0
j ,

du

dK
=

Kc

K2 �
j=1,2,. . .

jujt0
j−1. �18�

The scales of t and u are determined by setting w1=u0=1.

B. Fits

Whereas Eq. �11� includes, in principle, infinitely many
terms, for numerical work it is necessary to truncate the ex-
pansion of fs, as well as those of fa and the scaling fields, at
a finite order. Expression �13� for the energy already contains
the implicit simplification that there is only one irrelevant
field, and that the expansion of fs��1,x� is truncated at sec-
ond order. Moreover, higher orders in the expansion of the
temperature derivative of the irrelevant field were neglected.
We shall reconsider these simplifications in Sec. IV A. No
further simplifications were made in the derivation of Eq.
�16� from Eq. �13�.

Many attempts were made to fit Eqs. �13� and �16� to the
numerical data, using different ranges of K, and different sets
of parameters as determined by the orders at which the ex-
pansions were truncated. The unknown parameters in each
set were determined by means of a Levenberg-Marquardt
nonlinear least-squares analysis. Since Eqs. �13� and �16�
depend on the same parameters, the data for the energy and
the heat capacity were simultaneously fitted by one set of
parameters.
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A fit was considered satisfactory if it met three criteria:
first, the residual �2 has to be compatible with the number of
degrees of freedom; second, there should be sufficiently
large ranges of overlap with the accurate predictions from
the low- and high-temperature series expansions; and third,
at least the amplitudes of the leading terms in the fit formulas
should be reasonably stable under variations of the K interval
and of the number of correction terms in the temperature
field and the analytic background. In Table I, we list the
smallest satisfactory set of parameters thus obtained. We
skipped the ellipses in Eqs. �13� and �16�, and included terms
up to order j=4 in the expansion of t, up to j=2 in that of u,
and up to j=5 in the analytic parts expressed by the first
sums in Eqs. �13� and �16�. The residual of this fit was �2

=53.5, to be compared with the number of degrees of free-
dom df =84. Since possible correlations between specific
heat and energy data could influence the estimation of the
errors in the fitted parameters, we have analyzed the correla-
tions between the deviations of the energy and of the specific
heat with respect to the fit formula. We find a correlation
coefficient of −0.066, which is not significant, and does not
provide a reason to reconsider our error estimates.

During the least-squares analysis, we found that some pa-
rameter values changed significantly when the K interval

and/or the numbers of parameters in the expansions of t and
of the analytic background were varied. Such shifts were
sometimes comparable to the error margins as estimated
from statistics based on the accuracy of the Monte Carlo
results. This applied in particular to those of the wj and the ej
with j�2. In this respect, the amplitudes a+, a−, e0, e1, and,
to some extent, b+ and b− were better behaved. The error
estimates listed in Table I take into account the variation in
the parameter values between these fits.

IV. DISCUSSION

A. Choice of parameters and their error margins

Equation �11� and the fits of E and C use only one irrel-
evant field, while, according to Newman and Riedel �24�,
corrections to scaling could also arise from a second irrel-
evant field u� with exponent yu��2yu. We note that correc-
tions generated in first order of u� would thus, in the present
context, be practically indistinguishable from those gener-
ated in second order by u. For this reason, we have not
included a separate term containing u�. Furthermore, the en-
ergy, Eq. �13�, neglects a contribution due to the possible
K-dependence of the irrelevant field. Such a term behaves as
�t��3−yu�/yt and is thus a factor �t� smaller than the leading cor-
rection. The third-order correction in u, which is also ne-
glected, has nearly the same exponent.

Also neglected in the fit of Table I are corrections with
exponents y��−2, as found by Campostrini et al. �25� due to
the cubic anisotropy of the lattice. We also mention that the
application of the conformal group in three dimensions to
correlation functions introduces gradient operators �26�,
which shows the existence of corrections described y�=−2.
The presence of such corrections could modify the higher-
order correction amplitudes given in Table I. Although the �2

criterion did not yield indications that a term with y�=−2
should be included, we still performed additional fits with
y�=−2 in order to determine its effect on the fitted param-
eters. The error estimates in Table I include this effect.

Some further insight in the relative importance of the cor-
rections due to different orders of the irrelevant field can be
obtained by comparing the fit including the second order of
u, as given in Table I, to fits including up to the first order.
Reasonable fits, as following from the �2 criterion, could
only be obtained by including three more coefficients ej or
wj. Moreover, these coefficients tended to assume much
larger values. For this reason, we prefer the fit up to second
order in u, although the fit up to first order also yields a
satisfactory numerical representation of the critical energy
and specific heat.

Only the parameters a−, a+, c0, and c1, describing the
leading few orders of E and C, were about the same for both
types of fits. It is thus clear that not too much physical sig-
nificance should be given to the subleading and higher-order
parameters given in Table I, except that they provide a nu-
merical description of E and C in the critical region.

The relative errors in the amplitudes p− and p+ of the
second-order term in u, as given in Table I, are appreciable,
and far exceed those of the first-order amplitudes b− and b+.
For this reason, we believe that it is not necessary to include

TABLE I. Values of the parameters in the fit according to Eqs.
�13� and �16� to Monte Carlo data in the interval 0.15�K�0.60.
The error estimates given in the last column are not only based on
statistics, but also on the variations in the parameter values due to
changes of the fit interval and the number of parameters. In two
cases, the estimated error exceeds the parameter value and no error
is quoted. While these values have no physical meaning, they are
still useful for the evaluation of the specific heat and the energy.
The values of yt, yu, and Kc were taken from Ref. �14�.

Parameter Value Error margin

w1 1 Fixed

w2 0.662300 0.06

w3 0.160415 0.09

w4 0.008397

u0 1 Fixed

u1 −2.673700 0.6

a− 1.466642 0.016

a+ 2.758572 0.012

b− 0.923100 0.3

b+ −2.694381 0.4

p− −1.440041 0.4

p+ −2.345305 0.8

e0 0.990604 0.000004

e1 −27.847250 0.8

e2 110.506127 12

e3 −193.032628 50

e4 186.624090 100

e5 −80.141986

yt 1.587 Fixed

yu −0.82 Fixed

Kc 0.2216546 Fixed
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a third-order correction, or other terms with approximately
the same exponent.

B. Comparison with existing results

1. Series expansions

Numerical evaluation of Eq. �16� allows comparison with
results from series expansions. The low-temperature series
for the energy is provided by Bhanot et al. �15� up to order
25 in e−2K. The specific heat, as obtained by differentiation of
this series, is in good agreement with Eq. �16� in the interval
0.39�K�0.60. The differences, which are shown in Fig. 1,
do not exceed 10−4. For K�0.60, outside the range of the
least-squares fit, our representation of the specific heat with
Eq. �16� is no longer accurate and the differences increase
sharply. The increasing differences for K�0.30 are due to
the truncation of the low-temperature series to 25 terms.

For temperatures above the critical point, a comparison
can be made based on the series expansion up to order 46 of
the free energy as provided by Arisue and Fujiwara �16�,
with the help of Eq. �3�. The differences with Eq. �16� are
less than 10−4 interval 0.15�K�0.19, as plotted in Fig. 2.
For K�0.15, outside the range of the fit, Eq. �16� rapidly

loses its accuracy. The increasing differences for K�0.19
are due to the truncation of the series.

2. Amplitude ratios and analytic background

The fit up to first order in u yielded a universal amplitude
ratio a− /a+=0.540�5�, which is to be compared to the result
of the fit including the second order of u, which is a− /a+
=0.532�7� as follows from the parameter values in Table I.
Based on the consistency between these two results, we be-
lieve that the latter result a− /a+=0.532�7� is reliable. This
result is close to an estimate 0.541 �14� by Bagnuls et al.
�27� from field theory, and to the results 0.523 �9� and 0.532
�3� based on series expansions, obtained by Liu and Fisher
�28� and Campostrini et al. �29�, respectively. It is slightly
smaller than 0.560 �10� as determined from Monte Carlo
data by Hasenbusch and Pinn �30�.

Another universal ratio that can be constructed from the
results in Table I concerns the corrections-to-scaling ampli-
tudes. The data in the table suggest b− /b+=−0.34�12�, which
differs considerably from b− /b+=−0.96�25� as obtained by
Bagnuls et al. �27� �note the sign difference with respect to
the notation used by Bagnuls et al., which is related to the
factor d�t� /dK in our Eq. �16��. The sign of this amplitude
ratio is in agreement with the conclusions of Liu and Fisher
�31�.

As noted in Sec. IV A, there may be corrections to scaling
governed by an irrelevant field u� with exponent yu��2yu,
and thus indistinguishable from contributions in second order
of u. It is thus possible that the amplitudes p+ and p− as given
in Table I contain contributions due to the field u�. Therefore,
the resulting ratio p− / p+=0.61�24� may not qualify as a uni-
versal amplitude ratio.

Our result for the critical energy, e0=0.990604�4�, can be
compared with results obtained from series analysis. It is
slightly smaller than the result e0=0.99218�15� obtained by
Sykes et al. �32�, slightly larger than e0=0.9902�1� found by
Liu and Fisher �28�, and in agreement with e0=0.991�1�
found by Butera and Comi �33�. Our result is also consistent
with the Monte Carlo estimates e0=0.990�4� due to Jensen
and Mouritsen �34�, and e0=0.9904�8� due to Hasenbusch
and Pinn �30�.

3. Comparison with experimental results for Rb3CoCl5

As implied in the introduction, the magnetic Co2+ ions in
rubidium cobalt chloride assume a spin-1/2 Ising character.
This has been experimentally confirmed �35� in the related
compound Cs3CoCl5. The magnetic moments are aligned
along the c direction of the tetragonal crystal structure. The
Co2+ ions are arranged in a simple Bravais lattice, with
equivalent positions �36�. Furthermore, electron-spin reso-
nance results �37� for Cs3CoCl5 showed that the exchange
interaction with the two nearest neighbors in the crystallo-
graphic c direction has the same magnitude as that with the
four nearest neighbors in the aa plane, so that one may ex-
pect that the theoretical results for the simple-cubic Ising
model are applicable. Specific-heat and magnetic susceptibil-
ity measurements �9� on Rb3CoCl5 showed that a phase tran-
sition to an antiferromagnetic phase occurs at Tc=1.14 K. It

0
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0.004

0.006

0.008

0.35 0.4 0.45 0.5 0.55 0.6 0.65

∆ l

K

FIG. 1. Difference l��CLTE−Cfit� /k between the specific heat
of the Ising model as obtained from the low-temperature series of
the energy and from the present least-squares analysis according to
Eq. �16�. The difference l is at most 10−4 in the interval 0.39
�K�0.60.

0

0.002

0.004

0.006

0.008

0.14 0.16 0.18 0.2

∆ h

K

FIG. 2. Difference h��CHTE−Cfit� /k between the specific heat
of the Ising model as obtained from the high-temperature series of
the energy and from the present least-squares analysis according to
Eq. �16�. The difference h is at most 10−4 in the interval 0.15
�K�0.19.
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was indeed found that the specific heat �which does not de-
pend on the sign of K� did agree with the theoretical predic-
tions available at that time. These predictions were based on
series expansions due to Baker �38� and Sykes �39�, and on
the assumption that the specific-heat exponent �=0. In view
of later results for the specific-heat exponent, as well as the
effect of Wegner’s correction �18�, the comparison made in
Ref. �9� may thus not be considered as entirely satisfactory.
In Fig. 3, we show the experimental data together with Eq.
�16�, as well as results from the low- and high-temperature
series. This comparison with the experimental data, which
involves only one adjustable parameter, the critical tempera-
ture, shows that the specific heat of Rb3CoCl5 agrees reason-
ably well with the predictions for the simple-cubic Ising
model. The data in Fig. 3 suggest small deviations at low as
well as at high temperatures, but there the specific heat be-
comes very small, so that the experimental error margins,
which include the uncertainty of heat capacity of the empty
apparatus, become appreciable. A comparison of the experi-
mental data listed in Ref. �9� with the results from Eq. �16�
shows that deviations up to a few percent occur also in the
range 0.9�K /Kc�1.2. But these deviations do not display

an obvious systematical trend, and may possibly be attrib-
uted to the fact that the measured heat capacity is, near criti-
cality, the result of integration of a highly nonlinear function
over a nonzero temperature range.

It thus seems that further experiments on Rb3CoCl5 are
needed to firmly establish deviations with respect to the pre-
dictions for the simple-cubic Ising model. Such deviations
would be a logical consequence of the tetragonal symmetry
of Rb3CoCl5, which implies that there is no reason why the
coupling in the c direction should be precisely equal to that
in the a direction. Also, the presence of interactions with
further neighbor spins, which include small magnetic dipole-
dipole interactions, should lead to deviations.

C. Conclusion

The formula Eq. �16�, supplemented by Eqs. �17�, �18�,
and �12�, and by the parameter values in Table I, describes
the specific heat of the three-dimensional Ising model in the
interval 0.15�J /kT�0.60. Comparisons with low- and
high-temperature series expansions yield satisfactory agree-
ment in the intervals 0.15�J /kT�0.19 and 0.39�J /kT
�0.60, respectively. The differences between Eq. �16� and
the results from series expansions are at most 10−4 in the
mentioned intervals. These differences are smaller than the
statistical errors in the Monte Carlo results on which Table I
is based, as may be expected since the number of 100 data
points far exceeds the number of 16 free parameters in the fit
formula, so that in effect averaging occurs. Since Eq. �16�
continues to satisfactorily describe the extrapolated Monte
Carlo data until a distance �K−Kc��0.005 from the critical
point, we conclude that the error margin in Eq. �16� does not
exceed that of the Monte Carlo data, i.e., it will be limited to
at most a few times 10−3 at �K−Kc��0.005. Larger uncer-
tainties are expected for �K−Kc��0.005 because of the error
margins in the critical amplitudes, exponents and tempera-
ture. Taking into account these numerical uncertainties, Eq.
�16� can be used in the interval 0.15�J /kT�0.60 for com-
parison with experiments on systems that are described by
the simple-cubic Ising Hamiltonian.

In addition, our results show that Monte Carlo simulations
can be used to determine the universal leading amplitude
ratio a− /a+ and even to produce a rough estimate of the
subleading ratio b− /b+. Thus far, the correction-to-scaling
amplitudes have been studied by means of series analysis,
field theory, and crossover scaling, see, e.g., Refs.
�27,31,40,41�.
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FIG. 3. Specific heat of the Ising model on the simple-cubic
lattice. Logarithmic scales are used because of the large variation in
the specific heat with temperature. The data points are existing ex-
perimental results �9� for Rb3CoCl5. The full line represents the
scaling form Eq. �16� with the parameters defined in Table I. The
dashed lines at the lower left and right are obtained from low- and
high-temperature series expansions �15,16� of the free energy.
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